Design and Implementation of PID-Based Steering
Control for 1/10-Scale Autonomous Vehicle

Victor Robila
Hunter College High School
New York City, USA
victor.robila@gmail.com

Laura Paulino
Department of Computer Science
Montclair State University
Montclair, USA

Mihir Rao
Chatham High School
Chatham, USA
mihirraov@gmail.com

adamespaulll @montclair.edu

Iris Li
Millburn High School
Millburn, USA
iris.1li6285@gmail.com

Abstract—Due to the rising popularity and interest in
autonomous vehicles, it is beneficial to build a low-cost
prototype autonomous vehicle for educational purposes.
Thus, more students would be able to acquire hands-on
experiences in designing and implementing critical smart
navigational functionalities for autonomous vehicles. In this
study, Proportional-Integral-Derivative (PID) control and
steering control algorithms are developed to maneuver a
1/10-scale autonomous vehicle in a real-world scaled-down
driving environment. An obstacle detection system is also
designed. The state-of-the-art Robot Operating System
(ROS) is employed in the software development and vehicle
control to communicate between components. This paper,
as part of a few related papers on autonomous vehicle from
our research group, focuses on the control algorithms
design and implementation, which incorporates continuous
real-time feedback to generate a correction value to keep
the vehicle on track. The algorithm combines the lane
tracking, stop sign detection, and obstacle detection of the
vehicle and sends data values to motors. Experimental
results suggest the efficacy of our developed approaches.
The future work of this study is discussed.

Index Terms—autonomous vehicle,
obstacle detection, PID Control

computer vision,

I. INTRODUCTION

Autonomous vehicles are at the forefront of the next
transportation model. As technology progresses, there are
opportunities to reduce pollution and congestion in traffic [1].
Widespread use of autonomous vehicles communicating with
each other can lead to less car crashes as wells as an overall
decrease in pollution due to the reduction of traffic congestion
[2]. These factors served as motivation for our research.

For successful navigation, autonomous vehicles need to be
able to respond to driving environments using lane tracking,
obstacle detection, and sign recognition. Software components
used to build the obstacle detection and lane tracking systems
are thus crucial for the function of an autonomous vehicle and

Michelle Zhu
Department of Computer Science
Montclair State University
Montclair, USA
zhumi@montclair.edu

Weitian Wang
Department of Computer Science
Montclair State University
Montclair, USA
wangw(@montclair.edu

have been extensively investigated. However, the independent
software components also need efficient coordination through
central modules [3]. Therefore, the development of a PID
(Proportional-Integral-Derivative) program to manage the
control loop where data are converted from sensory inputs
(cameras and sensors) into numerical data that are then used to
adjust steering and speed, is vital to the success of a vehicle.

Further motivation for this study involves the low cost of
the vehicle. Creating small-scale autonomous vehicles can
broaden the participation of students in research and learning
experiences. Such platforms can further serve as devices to
engage the broader society to explain autonomous navigation
and thus increase the acceptance of the technology. The scaled-
down vehicles are also vastly cheaper than a full-size
autonomous vehicle, yet they are still able to provide a
multitude of research opportunities [4], [5].

This project is a continuation of previous work that focused
on the design of an autonomous vehicle and the overall
identification of the software and hardware models [6], [7]. A
plan of work on the obstacle detection as well as a framework
for steering control was conducted and described. In addition,
the lane tracking and stop sign detection as described in [6]
were done. This study focuses on the PID-based steering
control of the vehicle. The track, where the autonomous vehicle
ran in simulated situations in the real world, could be scaled up
for full-size vehicles. Autonomous driving can be achieved by
using the vehicle’s cameras and sensors to make decisions
based on data produced by the environment.

II. LITERATURE REVIEW

There are several approaches for the creation of autonomous
vehicles and different ways to run them. One of the main
methods to do this with smaller scale vehicles is to run the
autonomous vehicle on an Arduino device that controls the
physical actions (turning/speed, etc.) of the vehicle [8]-[10].
Another way to utilize the Arduino device is through a multi-
objective pipeline approach that takes inputs and directly sends
them to separate motors based on the type of input given. This
can help increase the efficiency of a vehicle by eliminating the
need to sort through data and reducing the overhead of signal

0758



transmission [9]. These methods are usually simpler but remove
the possibility of choosing between multiple inputs and making
decisions based on a wider variety of data [9]. For example, this
strategy works well for a vehicle that has an ultrasonic sensor
that stops the car at a certain distance but is harder to implement
in a vehicle with multiple types of data such as angles and
conflicting or overlapping data (e.g., having an obstacle
detection program which stops the vehicle and some other
software that also stops the vehicle but does so due to different
data). Another method for the steering and car control PID is an
individual pipeline approach that takes different data inputs and
converts them into signals that communicate with the motors on
the vehicle, either wireless or wired. This method ensures that
all the data is received at the same rate and that the machine can
react to the data in a timely manner [5]. The data inputs received
vary among projects and can range from obstacle detection
sensors to cameras to assist with lane tracking; a decision is
made based on this data as to the exact direction and speed that
the motors should move [5], [11], [12].

In addition to the structures of the other papers’ autonomous
vehicle software, there are also various software/hardware
differences. Previous studies used an Arduino device to run code
due to how it incorporated powerful and complex programming
functions while being easy-to-use, making it suitable for a
classroom environment [8]. One team used just an Arduino [11]
to run their autonomous vehicle but most used a combination of
Arduino and the Robot Operating System (ROS). ROS made it
easy for them to implement other libraries in Arduino and to
communicate between codes. Otherwise, the software was very
similar to our model, but the approaches for steering and speed
control varied significantly. For the hardware components, other
teams used their own cameras and motors to run their vehicle,
but the most important differences are within the construction,
namely the number or location of the wheels and the size of the
vehicles.

Different approaches can be pursued in building the
autonomous platforms, including different wheel configurations
such as three-wheels [9], [11]. A three-wheel approach renders
steering easier. Other designs were based on six-wheel platforms
or treads instead of actual wheels [9], [13]. Another key
distinction found in the research was that many approaches had
a much smaller vehicle than ours, simultaneously decreasing
price and increasing steering control and speed. While this
smaller size may seem beneficial, the downside is that it leaves
less space for other hardware components, so the larger size of
our vehicle made it more powerful than several of those
mentioned [9].

In this study, we developed a more realistic autonomous
platform that is closer in design to a real-size vehicle than those
described in other papers. The vehicle had the same number of
wheels and shape as vehicles used today by consumers. It also
incorporated features such as obstacle detection, lane tracking,
and sign detection, all features that are similar to those used in
full-scale autonomous vehicles. Unlike full-scale vehicles, our
platform was more cost-convenient and used mostly off-the-
shelf hardware, thus allowing for further customization and
expansion. In line with previous research, the processing
pipeline was built using ROS and Arduino and facilitates the
inclusion of extensions as well as supporting reproducibility.

III. OVERVIEW OF HARDWARE SYSTEM

The 1/10-scale autonomous vehicle had a variety of
hardware components and was built on a short-course racing
truck due to how its size allowed for the other hardware to fit on
top (see Fig. 1) . The truck used had a Magnum 272 transmission
with 2-wheel Drive and a torque-control™ slipper clutch. We
used a waterproof Titan 12-Turn 550 motor equipped with XL-
5 electronic speed control and comprehensive steering
capabilities. This model is very similar to real-world driving
experiences and allows the vehicle to drive in a variety of
weather conditions without breaking. Full specifications can be
found in [14].

For the physical computing system, we used an NVIDIA
Jetson Xavier [15], [16] which runs the Ubuntu 18.04 Operating
System to incorporate our software [17]-[19]. The computing
platform was chosen for its small size and lightweight while still
being very powerful.

Fig. 1. Image of the vehicle showing its components. The distance sensors are
visible at the front and back of the vehicle as well as the computing system,
camera, and wheels.

An Arduino board is used to run our PID-based steering
control algorithms. The one we chose was an Arduino MEGA
2560 (see Fig. 2) [20]. The board has 54 digital input/output
pins, 16 analog inputs, and 4 serial ports. The board sends
commands to the motors to make the vehicle function in our
driving environment. For our vehicle to be able to see the road
and run the lane-tracking and road sign recognition features, we
needed a high-resolution camera. This enabled us to collect real
time data which was converted into instructions that told the
vehicle to accelerate, decelerate, and turn. The image data is sent
from the camera to NVIDIA Jetson Xavier, where calculations
are made and steering/speed values are sent to the Arduino.

Fig. 2. Arduino Mega2560. Image credit [21].

0759



Camera

Mini-PC

Distance Sensors Arduino Distance Sensors

Motors

Fig. 3. The component architecture of the Autonomous vehicle.

As shown in Fig. 3, the camera and the distance sensors
communicate with the Arduino code running on the mini-PC
NVIDIA Jetson Xavier. The PID algorithms in the Arduino code
convert the data collected from the outside world into speed and
data values which are communicated with the motors. The high-
resolution camera is mounted on top of the chassis while
distance sensors are placed in the front and back of the chassis.

Finally, to test the obstacle detection we employed HC-SR04
ultrasonic sensors. These detect an obstacle within the range of
0.02m to 4m (see Fig. 4). The sensor sends out ultrasonic waves
and measures the time from when the wave is sent out to when
the receiver detects the reflection of the wave. This is then
converted to the distance from the obstacle that reflected the
wave. Three sensors were placed in front and three were placed
in the back. In this work, only the front sensors were used.

Fig. 4. HC-SR04 ultrasonic sensor. Image credit [22].

The experimental setup also included a driving environment
(see Fig. 5) created by putting white tape on the floor of our lab
and modeling it after the lane markings used in the real world.
The entire environment is built to scale, including the vehicle
and several stop signs and obstacles which can be added to
simulate the vehicle running in the real world. This was used as
a training platform to fine-tune aspects of the code and to run
various experiments.

Fig. 5. The driving environment.

IV. OVERVIEW OF SOFTWARE SYSTEM

The main software components of the autonomous vehicle
are Robotics Operating System (ROS), Python, and Arduino,
which run simultaneously on an Ubuntu Operating System.
Ubuntu is an open-source operating system (OS) that is based
on Linux, and has uses in a variety of fields, including
autonomous vehicles and machine learning. For the operating
system used on the mini-PC, we used Ubuntu version 18.04 [19].

We used the Arduino Integrated Development Environment
(IDE) to write the code for the vehicle and the Arduino board to
run it. The combination of hardware and software was used to
compute the angle and speed for the vehicle and to communicate
with the motors in the vehicle. Arduino can be used in Windows,
Linux, and Mac and provides a simple and easy-to-use
programming environment. In addition to ROS, Ubuntu, and
Arduino, our vehicle also used Microsoft Visual Studio to run
the python programs for road sign detection and lane tracking.
ROS was implemented into these programs and connected them
with the Arduino PID [5], [10], [25], [26].

ROS is a collection of open-source robotics libraries and
software. It is a platform where various entities can provide their
software and libraries for people interested in robotics to use.
For our project, we used ROS to communicate between the
sensors and programs related to them and the Arduino PID to
run the robot’s mechanical components (steering and speed). We
made use of ROS publishers and subscribers to do this,
publishing the data in specific channels that the Arduino code
listened to [23], [24]. The publisher sends data values to the ROS
channel from which the subscriber in the Arduino code pulls the
data. From there it is converted into speed and steering values.

V. APPROACH

To run the platform, two sensor data streams generated from
the ultrasonic sensors and camera were used to adjust the speed
and steering of the vehicle. Such adjustment was done in stages.
First, camera data was processed to provide estimates for the
deviation from the lane (see Fig. 3). Additional work where
camera data are also used for traffic sign detection and
interpretation is ongoing. In this project, simulated data for sign
information was used. Finally, distance sensor data provided
estimates for how far potential obstacles were located and were
also used to adjust the speed.

The lane tracking module analyzes video data and generates
a stream of values that correspond to correction angles (in the
range of -180 to 180 degrees). The module transformed the
perspective to see the lines and used trigonometry to calculate
the deviation from the center of the path. The deviation stream
was then sent using an ROS publisher as an integer value and
was received by a subscriber in the Arduino code that ran on the
same channel. The offset angle was then added to the angle
where the vehicle is straight and thus acted as a correction. If the
angle created as a result of the calculation was greater than 180
or less than 0, it was rounded to 180 and 0 respectively (see Fig.
6). This angle would then be input in a function that controlled
the speed and steering of the vehicle.

The second camera data stream was produced by a module
that estimated the distance from a stop sign. The module
generated a percent certainty that there was a stop sign in the

0760



view of the camera and would output the distance from that sign
once a threshold certainty value was reached. This, like the lane
tracking program, would then be published on a different ROS
channel. The corresponding subscriber in the Arduino code
receives the data and converts it to a speed value based on this
distance. For example, if the distance was less than 60 cm and
greater than 50 cm, the speed would be changed to the set value
of 130 cm for that interval. The vehicle would gradually slow
down until it reached a distance less than 20 cm from the stop
sign, after which it would stop for 20 seconds before resuming
normal operations.

New Steering Computation
- Inputs: steering_value (received by ROS subscriber)
- Updates: newsteering

newsteering = (int)steering_value*1.3+90

if newsteering < 0
/I minimum steering value is 0
newsteering = 0

else if newsteering > 180
/I maximum steering value is 180
newsteering = 180

Fig. 6. Pseudocode for computing the direction based on the steering value
received.

Next, data generated by the distance sensors were used to
detect obstacles. Although the platform had sensors at the front
and back of the vehicle (six in total, three in front, three in back),
the vehicle was only moving forward, so only the front sensors
were used. To compute the distance, we averaged the
measurement of all three sensors. Then, based on the distance
from the obstacles, similar to the stop sign distance, the car
would slow down and stop at the fixed distance of 40 cm. This
was all done directly through the Arduino board and did not need
another ROS publisher or subscriber.

Adjusting Vehicle Speed and Steering

- Inputs: frontdistance

- Updates: steering and velocity (data used to control the
platform)

if frontdistance = 40
/Isteering but stop vehicle
velocity = 90

if 70 = frontdistance = 40
/Ichange to new steering and reduce speed
steering=newsteering
velocity=120

if frontdistance > 70
/ichange to new steering and go full speed
steering=newsteering
velocity= 180

Fig. 7. Pseudocode for adjusting the speed and direction.

Figs. 6 and 7 show the pseudocode for the PID functionality
that controls the speed based on obstacles and steering changes
based on the lane tracking. As noted earlier, the speed values can
range from 0 to 180, and in our case, based on the obstacle
detection we either stop the vehicle, slow it down or run the
vehicle at the maximum speed (Fig. 7). The steering adjustment

factor (1/3) was empirically determined based on repeated
measurements that determined that our platform had a slight
deviation in steering.

VI. ON-ROAD APPLICATION RESULTS AND ANALYSIS

The testing for our autonomous vehicle was done in three
parts: obstacle detection, stop sign detection, and lane tracking.
All of these parts involved the PID algorithm and the
connections between sections using ROS.

A. Obstacle Detection

The criteria for this section of testing were whether the car
detected an obstacle, and the platform reduced the speed
promptly. Fig. 8 maps our results aggregated across the three
sensors across 10 data points taken from a test of the vehicle. A
board was placed in front of the vehicle to simulate an obstacle.
The distance to the obstacle was measured. Simultaneously, the
speed of the vehicle was also observed. The data was taken from
an array being repeatedly updated which included the distance
data from the 3 sensors (floats), the speed, and the steering
values (integers).

The blue line in the figure maps the aggregated distance
while the red dashed line maps the motor power. As noted
earlier, a power level of 90 means that the vehicle is stopped.
The obstacle detection sensors did exhibit a change in distance
and the change varied correctly based on the distance from the
board. This graph also displays the speed at which the vehicle
reacts to obstacles and demonstrates that our vehicle was very
successful in adjusting to obstacles.

In addition to this, the wheels correctly changed their
turning speed based on the thresholds of 100 cm, 70 cm, and 40
cm, where 40 cm is when the vehicle stopped, and 70 cm-40 cm
is when the vehicle began to slow down.

140 200
180
120
160
100 140
g - 120 5
8 100 3
2 o &
a 80
40 60
40
20
20
0 0

1 2 3 4 5 6 7 8 9 10

Average Distance == == Motor Power

Fig. 8. The plot of the average distance measured by the ultrasonic sensors
(blue line) and the adjusted motor power (red dashed line).

Therefore, both the obstacle detection and PID portions of
the Arduino code were fully functioning for this part of the
experiment.

B. Stop Sign Detection

The stop sign detection code is yet to be incorporated on our
platform due to version incompatibility between the computer
vision libraries and the software installed on the mini-PC. As

0761



such, rather than using real data, we generated random
sequences to be sent by the ROS publishers. In our experiments,
we noticed that the speed changed accordingly, and the wheels
also slowed down or sped up depending on the distance
received. The speed ranged from 90 to 180, where the vehicle
stopped at 20 cm from the sign and went at full speed 50 cm
before the sign. In addition, the vehicle did stop for 20 seconds
once the value received was less than or equal to 20. This
showed that the ROS publisher and subscriber communication
worked and that the PID was functioning correctly.

C. Lane Tracking

For lane tracking, the vehicle changed its steering value
based on the value received from the lane tracking module and
turned the wheels accordingly. The code was tested on the track,
and the lane tracking code sent out values while the PID received
and converted them accordingly. The PID also rounded the
values to 180 and 0 for certain situations as mentioned above.
Therefore, the PID and ROS publisher and subscriber
communications were also working for this part of the
experiment. The vehicle was successful in completing a lap
around the track and staying in the lane.

VII. CONCLUSIONS AND FUTURE WORK

In this study, we have developed PID-based steering control
algorithms to maneuver a 1/10-scale autonomous vehicle in a
real-world scaled-down driving environment. The state-of-the-
art ROS has been employed in the software development and
vehicle control. The PID and ROS implementation functioned
correctly and was able to respond in a timely manner in our
experiments. The integration of sensor data modules with
control modules meant that values were being sent from the
programs for lane tracking and stop sign detection and were
being received by the Arduino PID and being converted. There
are a variety of things that can be improved about this specific
aspect of the project, namely the speed of the conversions and
the accuracy of the values received. Currently, every value used
is an integer and has to be in order for the program to work. In
the future, we can potentially change the values to floats in order
to use decimals and make the vehicle more exact. The increased
speed of the vehicle’s operations could also help the vehicle
make decisions quicker. To make the model even more realistic
and closer to a production car, complete additions of stop sign
detection and even obstacle avoidance need to be added. In
addition, detecting crosswalks, other lane markings, and other
vehicles are part of our next steps for research. Gathering data
by testing the obstacle detection sensors and comparing that to
the actual distance will help us get a better idea of how well the
model is performing compared to other similar autonomous
vehicle designs. Speed tests can also provide useful data and
insights. In future work, we will also develop new and faster
approaches to improve and compare the performance of our
current solutions when related to production vehicles with
autonomous features.

REFERENCES

[1] S. Pettigrew, Z. Talati, and R. Norman, “The health benefits of
autonomous vehicles: public awareness and receptivity in Australia,”
Australian and New Zealand journal of public health, vol. 42, no. 5, pp.
480-483, 2018.

(2]

(3]
(4]

(3]

(6]

(71

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

[1e]

[17]
(18]
[19]
[20]

[21]

[22]

[23]
[24]
[25]

[26]

R. E. Stern et al., “Quantifying air quality benefits resulting from few
autonomous vehicles stabilizing traffic,” Transportation Research Part
D: Transport and Environment, vol. 67, pp. 351-365, 2019.

S. D. Pendleton et al., “Perception, planning, control, and coordination
for autonomous vehicles,” Machines, vol. 5, no. 1, p. 6, 2017.

S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and T.
Hamada, “An open approach to autonomous vehicles,” IEEE Micro, vol.
35, no. 6, pp. 6068, 2015.

“PID control explained. PID control is a mathematical approach... | by
Mattia Maldini | Medium.” https://maldus512.medium.com/pid-control-
explained-45b671f10bc7 (accessed Oct. 29, 2021).

L. Paulino, M. Zhu, and W. Wang, “Learning Autonomous Driving in
Tangible Practice: Development and On-Road Applications of a 1/10-
Scale Autonomous Vehicle,” in 2021 IEEE Frontiers in Education
Conference (FIE), 2021: IEEE, pp. 1-4.

W. Wang and L. Paulino, “Instill Autonomous Driving Technology into
Undergraduates via Project-Based Learning,” in 2021 IEEE Integrated
STEM Education Conference (ISEC), 2021: IEEE, pp. 1-3.

Y. A. Badamasi, “The working principle of an Arduino,” in 2014 11th
international conference on electronics, computer and computation
(ICECCO), 2014, pp. 14.

K. S. Alli et al., “Development of an Arduino-based obstacle avoidance
robotic system for an unmanned vehicle,” ARPN Journal of Engineering
and Applied Sciences, vol. 13, no. 3, pp. 1-7, 2018.

M. Fezari and A. Al Dahoud, “Integrated Development Environment
‘IDE’ For Arduino,” WSN applications, pp. 1-12,2018.

M. C. De Simone and D. Guida, “Identification and control of a unmanned
ground vehicle by using Arduino,” UPB Sci. Bull. Ser. D, vol. 80, pp.
141-154, 2018.

S. Evripidou, K. Georgiou, L. Doitsidis, A. A. Amanatiadis, Z. Zinonos,
and S. A. Chatzichristofis, “Educational Robotics: Platforms,
Competitions and Expected Learning Outcomes,” IEEE Access, vol. 8,
pp. 219534-219562, 2020.

F. M. Lopez-Rodriguez and F. Cuesta, “An Android and Arduino Based
Low-Cost Educational Robot with Applied Intelligent Control and
Machine Learning,” Applied Sciences, vol. 11, no. 1, p. 48, 2021.

“Slash: 1/10-Scale 2WD Short Course Racing Truck with TQ™ 2.4GHz
radio system,” Nov. 25, 2013. https://traxxas.com/products/models/
electric/58024slash (accessed Oct. 29, 2021).

“Deploy Al-Powered Autonomous Machines at Scale,” NVIDIA.
https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-agx-xavier/ (accessed Oct. 29, 2021).

H. A. Abdelhafez, H. Halawa, K. Pattabiraman, and M. Ripeanu,
“Snowflakes at the Edge: A Study of Variability among NVIDIA Jetson
AGX Xavier Boards,” in Proceedings of the 4th International Workshop
on Edge Systems, Analytics and Networking, 2021, pp. 1-6.

“Index of /releases/18.04.5.” https://old-
releases.ubuntu.com/releases/18.04.5/ (accessed Oct. 29, 2021).

“Six reasons why developers choose Ubuntu Desktop | Ubuntu.”
https://ubuntu.com/engage/developer-desktop (accessed Oct. 29, 2021).
M. Helmke, Ubuntu Unleashed 2019 Edition: Covering 18.04, 18.10,
19.04. Addison-Wesley Professional, 2018.

“Arduino Mega 2560 Rev3,” Arduino Official Store. https://store.arduino.
cc/products/arduino-mega-2560-rev3 (accessed Oct. 29, 2021).

A. Dingley, Arduino Mega2560.2011. Accessed: Oct. 29, 2021. [Online].
Available:
https://commons.wikimedia.org/wiki/File:Arduino_Mega2560.jpg

N. Dilmen, Ultrasonic sensor. 2014. Accessed: Oct. 29, 2021. [Online].
Available:
https://commons.wikimedia.org/wiki/File:HC SR04 Ultrasonic_sensor
1480322 3 4 HDR Enhancer.jpg

“ROS: The ROS Ecosystem.” https://www.ros.org/blog/ecosystem/
(accessed Oct. 29, 2021).

“ROS: Why ROS?” https://www.ros.org/blog/why-ros/ (accessed Oct.
29,2021).

“Getting Started with Arduino products.” https://www.arduino.cc/en/
Guide (accessed Oct. 29, 2021).

“Servo - Arduino Reference.” https://www.arduino.cc/reference/en/
libraries/servo/ (accessed Oct. 29, 2021).

0762



