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Abstract—Due to the rising popularity and interest in 

autonomous vehicles, it is beneficial to build a low-cost 

prototype autonomous vehicle for educational purposes. 

Thus, more students would be able to acquire hands-on 

experiences in designing and implementing critical smart 

navigational functionalities for autonomous vehicles. In this 

study, Proportional-Integral-Derivative (PID) control and 

steering control algorithms are developed to maneuver a 

1/10-scale autonomous vehicle in a real-world scaled-down 

driving environment. An obstacle detection system is also 

designed. The state-of-the-art Robot Operating System 

(ROS) is employed in the software development and vehicle 

control to communicate between components. This paper, 

as part of a few related papers on autonomous vehicle from 

our research group, focuses on the control algorithms 

design and implementation, which incorporates continuous 

real-time feedback to generate a correction value to keep 

the vehicle on track. The algorithm combines the lane 

tracking, stop sign detection, and obstacle detection of the 

vehicle and sends data values to motors. Experimental 

results suggest the efficacy of our developed approaches. 

The future work of this study is discussed. 

Index Terms—autonomous vehicle, computer vision, 

obstacle detection, PID Control 

I. INTRODUCTION

Autonomous vehicles are at the forefront of the next 
transportation model. As technology progresses, there are 
opportunities to reduce pollution and congestion in traffic [1]. 
Widespread use of autonomous vehicles communicating with 
each other can lead to less car crashes as wells as an overall 
decrease in pollution due to the reduction of traffic congestion 
[2]. These factors served as motivation for our research. 

For successful navigation, autonomous vehicles need to be 
able to respond to driving environments using lane tracking, 
obstacle detection, and sign recognition.  Software components 
used to build the obstacle detection and lane tracking systems 
are thus crucial for the function of an autonomous vehicle and 

have been extensively investigated. However, the independent 
software components also need efficient coordination through 
central modules [3]. Therefore, the development of a PID 
(Proportional-Integral-Derivative) program to manage the 
control loop where data are converted from sensory inputs 
(cameras and sensors) into numerical data that are then used to 
adjust steering and speed, is vital to the success of a vehicle.  

Further motivation for this study involves the low cost of 
the vehicle. Creating small-scale autonomous vehicles can 
broaden the participation of students in research and learning 
experiences. Such platforms can further serve as devices to 
engage the broader society to explain autonomous navigation 
and thus increase the acceptance of the technology. The scaled-
down vehicles are also vastly cheaper than a full-size 
autonomous vehicle, yet they are still able to provide a 
multitude of research opportunities [4], [5].  

This project is a continuation of previous work that focused 
on the design of an autonomous vehicle and the overall 
identification of the software and hardware models [6], [7]. A 
plan of work on the obstacle detection as well as a framework 
for steering control was conducted and described. In addition, 
the lane tracking and stop sign detection as described in [6] 
were done. This study focuses on the PID-based steering 
control of the vehicle. The track, where the autonomous vehicle 
ran in simulated situations in the real world, could be scaled up 
for full-size vehicles. Autonomous driving can be achieved by 
using the vehicle’s cameras and sensors to make decisions 
based on data produced by the environment. 

II. LITERATURE REVIEW

There are several approaches for the creation of autonomous 
vehicles and different ways to run them. One of the main 
methods to do this with smaller scale vehicles is to run the 
autonomous vehicle on an Arduino device that controls the 
physical actions (turning/speed, etc.) of the vehicle [8]–[10]. 
Another way to utilize the Arduino device is through a multi-
objective pipeline approach that takes inputs and directly sends 
them to separate motors based on the type of input given. This 
can help increase the efficiency of a vehicle by eliminating the 
need to sort through data and reducing the overhead of signal 
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transmission [9]. These methods are usually simpler but remove 
the possibility of choosing between multiple inputs and making 
decisions based on a wider variety of data [9]. For example, this 
strategy works well for a vehicle that has an ultrasonic sensor 
that stops the car at a certain distance but is harder to implement 
in a vehicle with multiple types of data such as angles and 
conflicting or overlapping data (e.g., having an obstacle 
detection program which stops the vehicle and some other 
software that also stops the vehicle but does so due to different 
data). Another method for the steering and car control PID is an 
individual pipeline approach that takes different data inputs and 
converts them into signals that communicate with the motors on 
the vehicle, either wireless or wired. This method ensures that 
all the data is received at the same rate and that the machine can 
react to the data in a timely manner [5]. The data inputs received 
vary among projects and can range from obstacle detection 
sensors to cameras to assist with lane tracking; a decision is 
made based on this data as to the exact direction and speed that 
the motors should move [5], [11], [12].  

In addition to the structures of the other papers’ autonomous 
vehicle software, there are also various software/hardware 
differences. Previous studies used an Arduino device to run code 
due to how it incorporated powerful and complex programming 
functions while being easy-to-use, making it suitable for a 
classroom environment [8]. One team used just an Arduino [11] 
to run their autonomous vehicle but most used a combination of 
Arduino and the Robot Operating System (ROS). ROS made it 
easy for them to implement other libraries in Arduino and to 
communicate between codes. Otherwise, the software was very 
similar to our model, but the approaches for steering and speed 
control varied significantly. For the hardware components, other 
teams used their own cameras and motors to run their vehicle, 
but the most important differences are within the construction, 
namely the number or location of the wheels and the size of the 
vehicles. 

Different approaches can be pursued in building the 
autonomous platforms, including different wheel configurations 
such as three-wheels [9], [11]. A three-wheel approach renders 
steering easier. Other designs were based on six-wheel platforms 
or treads instead of actual wheels [9], [13]. Another key 
distinction found in the research was that many approaches had 
a much smaller vehicle than ours, simultaneously decreasing 
price and increasing steering control and speed. While this 
smaller size may seem beneficial, the downside is that it leaves 
less space for other hardware components, so the larger size of 
our vehicle made it more powerful than several of those 
mentioned [9]. 

In this study, we developed a more realistic autonomous 
platform that is closer in design to a real-size vehicle than those 
described in other papers. The vehicle had the same number of 
wheels and shape as vehicles used today by consumers. It also 
incorporated features such as obstacle detection, lane tracking, 
and sign detection, all features that are similar to those used in 
full-scale autonomous vehicles. Unlike full-scale vehicles, our 
platform was more cost-convenient and used mostly off-the-
shelf hardware, thus allowing for further customization and 
expansion. In line with previous research, the processing 
pipeline was built using ROS and Arduino and facilitates the 
inclusion of extensions as well as supporting reproducibility. 

III. OVERVIEW OF HARDWARE SYSTEM

The 1/10-scale autonomous vehicle had a variety of 
hardware components and was built on a short-course racing 
truck due to how its size allowed for the other hardware to fit on 
top (see Fig. 1) . The truck used had a Magnum 272 transmission 
with 2-wheel Drive and a torque-controlTM slipper clutch. We 
used a waterproof Titan 12-Turn 550 motor equipped with XL-
5 electronic speed control and comprehensive steering 
capabilities. This model is very similar to real-world driving 
experiences and allows the vehicle to drive in a variety of 
weather conditions without breaking. Full specifications can be 
found in [14]. 

For the physical computing system, we used an NVIDIA 
Jetson Xavier [15], [16] which runs the Ubuntu 18.04 Operating 
System to incorporate our software [17]–[19]. The computing 
platform was chosen for its small size and lightweight while still 
being very powerful. 

Fig. 1. Image of the vehicle showing its components. The distance sensors are 
visible at the front and back of the vehicle as well as the computing system, 

camera, and wheels. 

An Arduino board is used to run our PID-based steering 
control algorithms. The one we chose was an Arduino MEGA 
2560 (see Fig. 2) [20]. The board has 54 digital input/output 
pins, 16 analog inputs, and 4 serial ports. The board sends 
commands to the motors to make the vehicle function in our 
driving environment. For our vehicle to be able to see the road 
and run the lane-tracking and road sign recognition features, we 
needed a high-resolution camera. This enabled us to collect real 
time data which was converted into instructions that told the 
vehicle to accelerate, decelerate, and turn. The image data is sent 
from the camera to NVIDIA Jetson Xavier, where calculations 
are made and steering/speed values are sent to the Arduino. 

Fig. 2. Arduino Mega2560. Image credit [21]. 
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Fig. 3. The component architecture of the Autonomous vehicle. 

As shown in Fig. 3, the camera and the distance sensors 
communicate with the Arduino code running on the mini-PC 
NVIDIA Jetson Xavier. The PID algorithms in the Arduino code 
convert the data collected from the outside world into speed and 
data values which are communicated with the motors. The high-
resolution camera is mounted on top of the chassis while 
distance sensors are placed in the front and back of the chassis. 

Finally, to test the obstacle detection we employed HC-SR04 
ultrasonic sensors. These detect an obstacle within the range of 
0.02m to 4m (see Fig. 4). The sensor sends out ultrasonic waves 
and measures the time from when the wave is sent out to when 
the receiver detects the reflection of the wave. This is then 
converted to the distance from the obstacle that reflected the 
wave. Three sensors were placed in front and three were placed 
in the back. In this work, only the front sensors were used. 

Fig. 4. HC-SR04 ultrasonic sensor. Image credit [22]. 

The experimental setup also included a driving environment 
(see Fig. 5) created by putting white tape on the floor of our lab 
and modeling it after the lane markings used in the real world. 
The entire environment is built to scale, including the vehicle 
and several stop signs and obstacles which can be added to 
simulate the vehicle running in the real world. This was used as 
a training platform to fine-tune aspects of the code and to run 
various experiments. 

Fig. 5. The driving environment. 

IV. OVERVIEW OF SOFTWARE SYSTEM

The main software components of the autonomous vehicle 
are Robotics Operating System (ROS), Python, and Arduino, 
which run simultaneously on an Ubuntu Operating System. 
Ubuntu is an open-source operating system (OS) that is based 
on Linux, and has uses in a variety of fields, including 
autonomous vehicles and machine learning. For the operating 
system used on the mini-PC, we used Ubuntu version 18.04 [19]. 

We used the Arduino Integrated Development Environment 
(IDE) to write the code for the vehicle and the Arduino board to 
run it. The combination of hardware and software was used to 
compute the angle and speed for the vehicle and to communicate 
with the motors in the vehicle. Arduino can be used in Windows, 
Linux, and Mac and provides a simple and easy-to-use 
programming environment. In addition to ROS, Ubuntu, and 
Arduino, our vehicle also used Microsoft Visual Studio to run 
the python programs for road sign detection and lane tracking. 
ROS was implemented into these programs and connected them 
with the Arduino PID [5], [10], [25], [26]. 

ROS is a collection of open-source robotics libraries and 
software. It is a platform where various entities can provide their 
software and libraries for people interested in robotics to use. 
For our project, we used ROS to communicate between the 
sensors and programs related to them and the Arduino PID to 
run the robot’s mechanical components (steering and speed). We 
made use of ROS publishers and subscribers to do this, 
publishing the data in specific channels that the Arduino code 
listened to [23], [24]. The publisher sends data values to the ROS 
channel from which the subscriber in the Arduino code pulls the 
data. From there it is converted into speed and steering values. 

V. APPROACH

To run the platform, two sensor data streams generated from 
the ultrasonic sensors and camera were used to adjust the speed 
and steering of the vehicle. Such adjustment was done in stages. 
First, camera data was processed to provide estimates for the 
deviation from the lane (see Fig. 3). Additional work where 
camera data are also used for traffic sign detection and 
interpretation is ongoing. In this project, simulated data for sign 
information was used. Finally, distance sensor data provided 
estimates for how far potential obstacles were located and were 
also used to adjust the speed. 

The lane tracking module analyzes video data and generates 
a stream of values that correspond to correction angles (in the 
range of -180 to 180 degrees). The module transformed the 
perspective to see the lines and used trigonometry to calculate 
the deviation from the center of the path. The deviation stream 
was then sent using an ROS publisher as an integer value and 
was received by a subscriber in the Arduino code that ran on the 
same channel. The offset angle was then added to the angle 
where the vehicle is straight and thus acted as a correction. If the 
angle created as a result of the calculation was greater than 180 
or less than 0, it was rounded to 180 and 0 respectively (see Fig. 
6). This angle would then be input in a function that controlled 
the speed and steering of the vehicle. 

The second camera data stream was produced by a module 
that estimated the distance from a stop sign. The module 
generated a percent certainty that there was a stop sign in the 
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view of the camera and would output the distance from that sign 
once a threshold certainty value was reached. This, like the lane 
tracking program, would then be published on a different ROS 
channel. The corresponding subscriber in the Arduino code 
receives the data and converts it to a speed value based on this 
distance. For example, if the distance was less than 60 cm and 
greater than 50 cm, the speed would be changed to the set value 
of 130 cm for that interval. The vehicle would gradually slow 
down until it reached a distance less than 20 cm from the stop 
sign, after which it would stop for 20 seconds before resuming 
normal operations. 

Fig. 6. Pseudocode for computing the direction based on the steering value 
received. 

Next, data generated by the distance sensors were used to 
detect obstacles. Although the platform had sensors at the front 
and back of the vehicle (six in total, three in front, three in back), 
the vehicle was only moving forward, so only the front sensors 
were used. To compute the distance, we averaged the 
measurement of all three sensors. Then, based on the distance 
from the obstacles, similar to the stop sign distance, the car 
would slow down and stop at the fixed distance of 40 cm. This 
was all done directly through the Arduino board and did not need 
another ROS publisher or subscriber. 

Fig. 7. Pseudocode for adjusting the speed and direction. 

Figs. 6 and 7 show the pseudocode for the PID functionality 
that controls the speed based on obstacles and steering changes 
based on the lane tracking. As noted earlier, the speed values can 
range from 0 to 180, and in our case, based on the obstacle 
detection we either stop the vehicle, slow it down or run the 
vehicle at the maximum speed (Fig. 7). The steering adjustment 

factor (1/3) was empirically determined based on repeated 
measurements that determined that our platform had a slight 
deviation in steering.  

VI. ON-ROAD APPLICATION RESULTS AND ANALYSIS

The testing for our autonomous vehicle was done in three 
parts: obstacle detection, stop sign detection, and lane tracking. 
All of these parts involved the PID algorithm and the 
connections between sections using ROS. 

A. Obstacle Detection

The criteria for this section of testing were whether the car
detected an obstacle, and the platform reduced the speed 
promptly. Fig. 8 maps our results aggregated across the three 
sensors across 10 data points taken from a test of the vehicle. A 
board was placed in front of the vehicle to simulate an obstacle. 
The distance to the obstacle was measured. Simultaneously, the 
speed of the vehicle was also observed. The data was taken from 
an array being repeatedly updated which included the distance 
data from the 3 sensors (floats), the speed, and the steering 
values (integers). 

The blue line in the figure maps the aggregated distance 
while the red dashed line maps the motor power. As noted 
earlier, a power level of 90 means that the vehicle is stopped. 
The obstacle detection sensors did exhibit a change in distance 
and the change varied correctly based on the distance from the 
board. This graph also displays the speed at which the vehicle 
reacts to obstacles and demonstrates that our vehicle was very 
successful in adjusting to obstacles. 

In addition to this, the wheels correctly changed their 
turning speed based on the thresholds of 100 cm, 70 cm, and 40 
cm, where 40 cm is when the vehicle stopped, and 70 cm-40 cm 
is when the vehicle began to slow down.  

Fig. 8. The plot of the average distance measured by the ultrasonic sensors 
(blue line) and the adjusted motor power (red dashed line). 

Therefore, both the obstacle detection and PID portions of 
the Arduino code were fully functioning for this part of the 
experiment. 

B. Stop Sign Detection

The stop sign detection code is yet to be incorporated on our
platform due to version incompatibility between the computer 
vision libraries and the software installed on the mini-PC. As 
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such, rather than using real data, we generated random 
sequences to be sent by the ROS publishers. In our experiments, 
we noticed that the speed changed accordingly, and the wheels 
also slowed down or sped up depending on the distance 
received. The speed ranged from 90 to 180, where the vehicle 
stopped at 20 cm from the sign and went at full speed 50 cm 
before the sign. In addition, the vehicle did stop for 20 seconds 
once the value received was less than or equal to 20. This 
showed that the ROS publisher and subscriber communication 
worked and that the PID was functioning correctly. 

C. Lane Tracking

For lane tracking, the vehicle changed its steering value
based on the value received from the lane tracking module and 
turned the wheels accordingly. The code was tested on the track, 
and the lane tracking code sent out values while the PID received 
and converted them accordingly. The PID also rounded the 
values to 180 and 0 for certain situations as mentioned above. 
Therefore, the PID and ROS publisher and subscriber 
communications were also working for this part of the 
experiment. The vehicle was successful in completing a lap 
around the track and staying in the lane. 

VII. CONCLUSIONS AND FUTURE WORK

In this study, we have developed PID-based steering control 
algorithms to maneuver a 1/10-scale autonomous vehicle in a 
real-world scaled-down driving environment. The state-of-the-
art ROS has been employed in the software development and 
vehicle control. The PID and ROS implementation functioned 
correctly and was able to respond in a timely manner in our 
experiments. The integration of sensor data modules with 
control modules meant that values were being sent from the 
programs for lane tracking and stop sign detection and were 
being received by the Arduino PID and being converted. There 
are a variety of things that can be improved about this specific 
aspect of the project, namely the speed of the conversions and 
the accuracy of the values received. Currently, every value used 
is an integer and has to be in order for the program to work. In 
the future, we can potentially change the values to floats in order 
to use decimals and make the vehicle more exact. The increased 
speed of the vehicle’s operations could also help the vehicle 
make decisions quicker. To make the model even more realistic 
and closer to a production car, complete additions of stop sign 
detection and even obstacle avoidance need to be added. In 
addition, detecting crosswalks, other lane markings, and other 
vehicles are part of our next steps for research. Gathering data 
by testing the obstacle detection sensors and comparing that to 
the actual distance will help us get a better idea of how well the 
model is performing compared to other similar autonomous 
vehicle designs. Speed tests can also provide useful data and 
insights. In future work, we will also develop new and faster 
approaches to improve and compare the performance of our 
current solutions when related to production vehicles with 
autonomous features. 
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