Subspace-Classification Approach for Simulated Tuple
Class Assignment

Victor Robila*
victor.robila@gmail.com
Hunter College High School
New York, New York, USA

Abstract

We developed a subspace classifier for measurement classi-
fication to provide an alternative to current deep learning
approaches. Many modern neural networks cannot provide
an explanation for their classification, and by providing a nu-
meric path behind every classification, a subspace classifier
solves this issue. We first use a bayesian method in which all
the class conditional probabilities can be stored in memory.
Then we made experiments with simulated class conditional
distributions and defined a subspace classifier that does not
store all the data in the class conditional probability arrays.
This can use much larger distributions than the previous
model as it uses much less memory so we expanded to cases
where the measurement space is generated sequentially and
everything does not have to be in the memory at the same
time. For cases with distributions that fit in the memory we
also compared a bayesian approaches with subspaces. We
also compare the subspace classifier with a Python machine
learning approach and find that our model outperforms it.

Keywords: neural networks, machine learning, n-tuple

ACM Reference Format:

Victor Robila and Robert Haralick. 2022. Subspace-Classification
Approach for Simulated Tuple Class Assignment. In Proceedings
of Make sure to enter the correct conference title from your rights
confirmation emai (Conference acronym "XX). ACM, New York, NY,
USA, 11 pages. https://doi.org/XXXXXXXXXXXXXX

1 Introduction

Machine learning has been growing in popularity in recent
years and there have been many different approaches fo-
cusing on measurement classification [25][24][17]. One of
the most common and widely discussed methods is deep
learning, and it has found many applications in fields like

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Conference acronym 'XX, June 03-05, 2022, Woodstock, NY

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/XXXXXXX.XXXXXXX

Robert Haralick
robert@haralick.org
City University of New York (CUNY) Graduate School
New York, New York, USA

law, economics, and medicine [5][18][28]. However, a com-
mon problem with deep learning is that networks can get so
complicated that it is impossible to explain the reasoning be-
hind an algorithm’s decision, turning them into black boxes
where the input and output is the only thing that humans
can understand [12].

This problem is especially important when considering
fields where bias may be important and where decisions
can have important consequences. For example, there have
been many discussions on how deep learning approaches
in law can lead to unfair sentencing due to the implicit bias
contained in datasets [19]. If these deep learning approaches
are not used with supervision and their output is taken at
face value, deep societal problems can emerge [30].

The need for explainable approaches in sensitive fields is
why subspace classification, another type of machine learn-
ing approach, can be beneficial and useful [23]. Subspace
classification is inherently based on probabilistic mathemat-
ics and therefore the reasoning for the classification for a
measurement can be found directly by looking at the mathe-
matics behind said classification.

Our approach

We developed a subspace classifier in the C programming
language using Bayesian probabilistic statistics with the end
goal of classifying simulated tuple values. The basic sub-
space classifier is discussed in section 4. We developed this
tool with researchers in mind and allow a variety of cus-
tomizations to be made to the data, such as changing the
class distributions, measurements, subspaces, classification
methods and more.

Our approach used synthetic generations of class condi-
tional probabilities and the prior probabilities of the classes
that were much larger than what a normal computer could
run by using subspaces as defined in section 2 and described
in section 4.4. [Expand here]

Following the development of the two versions of the algo-
rithm, we also began optimizing the data generation process
to result in better results. Data in the real world, unlike our
simulated data are not completely random and usually have
some underlying structures or patterns that benefit machine
learning approaches, and we took slabs (or subsections) of a
data hypercube to simulate such conditions. We tested using
a variety of experimental protocols as discussed in section 5

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym *XX, June 03-05, 2022, Woodstock, NY

and propose future work in section 7. In section 3 we define
various terms and concepts that are needed to understand
the subspace classifier’s development.

In order to get a better understanding of the proposed
subspace classifier’s performance we also created another
kind of machine learning model, a Support Vector Machine
to see if our model outperforms a widely used standardized
one.

2 Previous Work

Subspace Classification and N-Tuple Classification

There has been a lack of research on subspace classifica-
tion in recent years, mostly due to the rapid rise and seem-
ingly infinite applications of deep learning approaches. Sub-
space classification was originally described in a 1959 paper
by Bledsoe and Browning where they introduced n-tuples for
typewritten character recognition, which was the original
application of subspace classification [4]. They represented
the dots of black and white that made up typewritten char-
acters as tuples and classified the type of character based on
that. Alexander et al commercialized it, and it is one of the
first pattern classification methods that is considered as a
neural network [3].

In more recent years there have been several advances
in n-tuple classification networks in almost all of their as-
pects. N-Tuple analysis for Optical Character Recognition
has been revisited by Jung et al. who demonstrated that
collections of n-tuples could be generated using a practical
search algorithm and created a generator that can be used by
researchers [10]. Memory usage in neural networks using
n-tuples has also been optimized by Mitchell et al. which is
similar to our subspace approach [15]. Jergensen and Lin-
neberg have shown that n-tuple classifiers do not always
assign the highest output score to the class that an input
belongs to and that n-tuple classifiers can be improved with
biased training priors [9]. By relating an output probability
with the probability of a certain class, it is possible to get
n-tuple classifiers to be closer to Bayesian classifiers. The
experimental protocols involved cross-validations.

Rohwer and Cressy, Tarling and Rohwer, and Morciniec
and Rohwer have shown that n-tuple classification is similar
in performance if not faster than most conventional methods
and is usually much simpler as well [22][26][16]. Rohwer
developed two probabilistic interpretations of the n-tuple
recognition method which allowed it to be analyzed with
Bayesian methods [21].

Subspace classifiers have also been used for speech recog-
nition by Gunal and Edizkan who used linear subspace clas-
sifiers such as the Class Featuring Information Compression
(CLAFIC), Multiple Similarity Method (MSM), and Common
Vector Approach (CVA) [7]. They found that they were able
to use the CLAFIC and CVA classifiers along with a feature

Robila, and Haralick

extraction method described in their paper to reach high
recognition rates.

Explainable Machine Learning

In terms of the need for explainable machine learning,
there have been several studies that discuss the ethical im-
plications of bias in machine learning. Recently, the Federal
Trade Commission has found that using what appear to be
neutral machine learning models can lead to discrimination
in jobs, housing, and banking [29]. There have also been
studies such as Chen et al. that find that bias can arise in
predictive health care [6]. The main problem is that models
cannot explain their decisions and therefore humans cannot
see if there is an implicit bias in play. As a result of this, there
have been many attempts to introduce explainable machine
learning into practice. For example, Lundberg et al. describe
a system that predicts the risk of hypoxaemia and possible
risk factors [13]. This wide range of applications means that
subspace classification is very important.

3 Definitions and Notation

Bayes Rule

The Bayes rule is a way to find the conditional probability
of an event if another event happens (P(A|B)). The Bayes rule
states that this probability (P(A|B)) is equal to the probability
of the other event happening given that the first event hap-
pened (P(B|A)) times the probability of the first event (P(A))
divided by the probability of the second event (P(B)). This
formula can be mathematically written as:

P(BJA)P(A)

P(AIB) = — 5

(1)

Measurement space and Subspaces

M is the notation used for the measurement space, or that
defines all of the tuples in our dataset. Feature variables can
have unique indexes. As an example, if there are N feature
variables, the index set I can be defined as {I} = {1,..., N}
where an index set is an ordered set of natural numbers such
as J ={1,2,4,5}.

The feature whose index is j takes its values from the
range L;. Measurement space or M can also be defined as
[Not sure how to get this X].

Robert Haralick’s definition of a subspace in Haralick and
Yuksel can be used for this paper [8]:

4 Methods
4.1 Software Components

All our code was written in the C programming language. C
is a general-purpose programming language and was chosen
mainly for its dynamic memory allocation and the fact that
it was easiest to apply to the project [27]. While all the code
was written in C, we also used a .txt file for our input data
file. We used a gcc compiler to compile our program [?].

Subspace-Classification Approach for Simulated Tuple Class Assignment

We developed the subspace classifier using the Visual
Studio Code Integrated Development Environment (IDE)
and choose it for its simple, easy-to-use interface. We used
VSCode version 1.72.2 [14].

For our comparison with a machine learning package we
used Python since it is widely used in the programming
community. Python is described as a object-oriented, high-
level programming language with dynamic semantics [2].
We also used the Sci-Kit learn machine learning package due
to its ease of use [20].

4.2 Background for Normal Subspace Classifier

4.2.1 Measurement Space, Tuple Generation, and True
Class Generation. Each measurement in the subspace clas-
sifier is in the form of a binary tuple, with a length specified
by the user. The total set of possible tuples with this given
length is defined as the measurement space. The size of this
measurement space is mathematically represented below,
where length denotes the number of elements in the tuple.

Size of Measurement Space = glength ()

This experiment uses simulated data for all the tuples
in the measurement space, which is generated by creating
every possible combination of 0s and 1s with the given tuple
length. These tuples are then randomly shuffled to simulate
real-world data.

This experiment also uses simulated data for the true class
of each element. The true class of a tuple is the tuple’s actual
class and is the value that will be compared to the assigned
values when confusion matrices (described in section 1.6)
are generated. An assigned class is the predicted class of a
tuple given by the model. A true class is randomly assigned
to each tuple in the measurement space. These true classes
are in a ratio specified by the user. For example, in an exper-
iment with 4 classes, the user can choose to use prior class
probabilities such as 30, 40, 15, and 15.

4.2.2 Probability Data Generation. Marginal Proba-
bility Generation

Each tuple needs to be given a probability of existing.
The array of all these probabilities is called the probability
array. Given that every tuple in the measurement space is
represented by a probability in this array, its total sum is 1.
The values in this array are also randomly generated.

Class Conditional Probability Generation

The next subroutine in the subspace classifier creates class
conditional probabilities for every class and tuple where a
class conditional probability is defined as P(d | c) where
do0 is a measurement tuple, c is a class, d is an element of
measurement space D (d € D), and c is an element of the set
of all classes (c € C). The specifics on how this is done are
further expanded on the programming section (section 2.).

Subspace Probability Generation

Conference acronym *XX, June 03-05, 2022, Woodstock, NY

Given that we have the class conditional probabilities, we
can now find the probability for each subspace. We create
subspaces by dividing each inputted tuple into smaller tuples
of uniform length, such that these smaller tuples are disjoint.
For example, if we have tuples of length 6, and want to have
2 subspaces, we will divide this tuple into two subspaces that
each have length three.

We need to find the probability of each tuple in each of
these subspaces to find the total probability of the tuple later
on when assigning classes. We can use the following formula
where M is the measurement space defined in section 3 with
range L;,i € I:

> Pi((Lx)le) (3)

{x)eM|n;(Lx)=(J.y) }

Pi((J.y)le) =

This formula shows the projection from the full space to
a subspace indexed by a set J. We find the probability of the
subspace given a class ¢ C where C is the set of all classes
(P;((J,y)|c) by projecting the original tuple into a subspace
and adding up the class conditional probabilities of that tuple.
To display this numerically, we can take an example where
we have binary tuples of length 6, 2 subspaces for each tuple,
and 4 classes. Since we have 2 subspaces for each tuple, and
each tuple is of length 6, each subspace has length 3. The
number of possible values for each of these subspaces is
8 since each tuple in each subspace is binary and 23 = 8.
We will have 2 subspace probability arrays since we have 2
subspaces, each of which will be in the shape 4 by 8 since
we have 4 classes and 8 possible tuples.

Now, we need to fill all of these subspaces with class condi-
tional distributions. Just like in the formula, we can take the
class conditional probabilities for each of the tuples that con-
tain the first subspace and add them to the 4 empty spaces in
the subspace probability array. As an example, if we consider
000, the tuple for the first subspace, we will find all the tuples
in the measurement space that have 000 as their first com-
ponents and add the class conditional probabilities for those
tuples into the place with 000 in the subspace probability
array. Since in this case we have 28 or 64 possible tuples, we
will add 8 probabilities for each class.

4.2.3 Tuple Class Assignment. Basic Assignment

The first classification that we can do is simply examine
which probability is greater for both the class conditional
subspace probabilities. Given that we have multiple sub-
spaces, we will assume that for each class the subspaces are
probabilistically independent. Therefore, for a given tuple,
we project the tuple into each subspace and multiply the
class conditional probabilities.

Economic Gain Matrix and Bayes Rule Assignment
To assign classes to all binary tuples using either class
conditional probabilities or subspace probabilities we can
also use an economic gain matrix and the Bayes Decision

Conference acronym *XX, June 03-05, 2022, Woodstock, NY

Table 1. Economic Gain Matrix

Assigned
True | ¢; ()
c1 0.4 0.2
Cs 0.1 6

Table 2. Probability of Measurement d; for each class

Robila, and Haralick

Table 4. Confusion Matrix Illustration

Trueclass: | d; | dy | ds
c1 12 1 .18 | .3
() 2 .16 | .04
Assigned: (¢, |c¢1 | ¢

Table 5. Confusion Matrix

Measurement
True Class | d;
1 0.13
Co 0.4

Trueclass: | di | dy | ds
) 12| 18] 3
() 2 .16 | .04
Assigned: | c2 |c1 | ¢

Table 3. Realistic Economic Gain Matrix

Assigned
True d1 d2 d3
c1 1 0|0
(o) 0 1|0
c3 0 0 |1

Rule. An economic gain matrix is a matrix that shows how
much benefit is given by each new assigned measurement
depending on the class. As seen in Table 1, in a two-class
environment, there are 4 gains, depending on the measure-
ment’s true class and assigned class.

In this example, the gain produced by assigning a mea-
surement with true class ¢; to a measurement with true class
¢ is 0.4, the gain produced by assigning a measurement with
true class ¢; to a measurement with true class c¢; is 0.1, etc.
Since assigning a class c; to a class with true class c; is so
much higher than everything else, the model will be biased
towards assigning every measurement to ¢, since in most
cases it will produce the most gain. The Bayes Decision Rule
can then be applied using this matrix. Let us look at one
measurement, d; that has probability 0.13 for true class ¢;
and probability 0.6 for true class c; as seen in Table 2.

Using the economic gain matrix described in Table 2, the
model will calculate the economic gain for each possibility.
For example, the economic gain of assigning measurement
d; to class ¢q is 0.13%0.4+0.1*0.6. Each measurement for d;
is multiplied by the gain for its respective true class. The
economic gain of assigning it to class c; is 0.130.2+6%0.6. The
latter is clearly larger so this measurement will be assigned
to class cs.

For this experiment, the economic gain matrix will be an
array filled with 0s except for the diagonal since there is no
benefit to assigning a class that is incorrect as seen from
table 3.

We used two forms of probability generation, subspace
probabilities, and class conditional probabilities so we ap-
plied Bayes rule twice. For the class conditional probabilities,
it was exactly as above. For the subspace probabilities, we
have multiple probabilities for each tuple (there are multiple
subspaces). Thus, we have to add these probabilities, and
compare probabilities using these sums.

4.2.4 The Confusion Matrix. In addition to assigning
classes to each of the measurement tuples in measurement
space, we can also find the total probability of correct identi-
fication. The confusion matrix takes the assigned classes and
looks at the probability of each measurement being correctly
identified by taking P(c | d). Tables 3 and 4 use a Bayes Deci-
sion Rule applying the economic gain matrix with only 1s
and 0s as described above and shows the calculations needed
to find the probability of correct classification.

The probability of correct classification for these simulated
data is 0.48+0.2=0.68 and is the sum of the probabilities of
a measurement being correctly classified in the confusion
matrix. Mathematically each of the elements in the confusion
matrix can be expressed as following where D is the total
size of the measurements pace, Pr is probability of true class,
Pr4 is the probability of the true class and assigned class
being whatever is in the parenthesis and where f; is the
assigned class.

4.3 Programming for Normal Subspace Classifier

4.3.1 Program Inputs and Outputs and Other Infor-
mation. The only inputs to the program are in the form
of a text file provided by the user that define the parame-
ters for which the classifier will run. These are in order, the
number of runs, the size of measurement space, the length
of each tuple in the measurement space, the length of each
subspace, the number of classes, a random seed, and the prob-
abilities for each of the classes. The probabilities for each
of the classes are entered on different lines where the first
line corresponds to the probability of the first class, second
line for the probability of the second class etc. and where

Subspace-Classification Approach for Simulated Tuple Class Assignment

Table 6. Mathematical Confusion Matrix

Assigned:

True | ¢y cy

c1 2dep fa(e)Pr(c1,d) | = Xaep fa(cz)Pr(c1, d)
2 2dep Ja(e))Pr(ca, d) | = Yaep fa(c2)Pr(cz d)

Pra(es,er) = ;[])mcl)PT(cl, d) (@
Pra(e,e2) =) fule2)Pr(c1,d) (5)
Pra(cy,c1) = deZDfd(cl)PT(cz, d) ©)
Pra(esc) = :EZZfd(cz)PT(cz, d) ()

the number of lines is equal to the number of classes. If the
inputs are not provided in this order and with the correct
types (float/int) the program will stop running and alert the
user that there is a mistake. Consequently, if the probabilities
do not add to 100, the program will also stop running.

The data file is read, several variables are filled, and a
class probability array is generated with the probabilities of
each of the classes. Then, all arrays used in the program are
defined and memory is allocated to them depending on their
sizes using malloc.

The output of the program depends on whether the debug
feature is on (section 4.3.9) but always contains the proba-
bility of correct identification for all four of the assignment
methods and the average across trials and perturbations.

4.3.2 Data Generation. The first subroutine used in the
subspace classifier program generates the array of tuples that
defines the measurement space. As mentioned previously
each tuple is binary with a length defined by the user. To
generate this array all the numbers up to the size of the
measurement space are converted to 6-digit binary arrays.
Following this, all arrays are added to the main measurement
space,

4.3.3 True Class Generation and Shuffling. The true
class assignment is the second subroutine that is used and
takes in the percentages for each class, the number of classes,
an empty true class array, and the number of measurements
in the measurement space. The percentages entered by the
user are checked to make sure that they add up to 100 (within
a certain threshold) and the program ends if they do not.
Then a double for loop is used to fill in the true class array
with the correct number of each percentage. The threshold
for the second for loop is:

percentage
(100.0 * (float)(number of measurements)) + 0.5

®)

Conference acronym *XX, June 03-05, 2022, Woodstock, NY

This is calculated for each class percentage. The 0.5 is
important since the for loop takes the floor of the value of
the fraction. Oftentimes, while the limit of the expression is
a whole number like 33, the program ends up with 32.99999
and needs the extra 0.5 to make sure that the upper bound of
the for loop is 33 and not 32. Following this, we fill the array
and count the number of classes that were placed in the array.
If there are too many true classes produced, the program
ends, and if there are too few, a random class is added until
the true class array. It was experimentally determined that
this very rarely happens and does not have a significant
effect on the data. Then, using the percentages for this part
of the program, P(c) is calculated.

4.3.4 Shuffling. An important step that needs to be done
following the creation of the true class array and the marginal
probability array is shuffling all of their terms. This is done
in another subroutine where each term is moved around to
a random position. This ensures that the true class array is
randomized and not just something like 1,1,1,1,1,2,2,2,3,3 as
this may bias the data.

4.3.5 Marginal Probability Generation. We also need
to generate the probability of each of the tuples in the mea-
surement space for the classifier to function. The program
does this by randomly generating values within a certain
threshold and then normalizes them to add up to 1.

4.3.6 Generating Conditional Probabilities by Apply-
ing Bayes Theorem. Given that all the basic parts needed
to find class conditional probabilities have been generated, it
is now possible to find those probabilities. Class conditional
probabilities P(d | ¢) where d is a measurement tuple, c is a
class, d is an element of measurement space D (d D), and ¢
is an element of the set of all classes (c C) are generated in
this subroutine. The specifics on how this is done are further
expanded in parts 2.7 and 2.8. Following the creation of the
class conditional probabilities, we must now use the Bayes
theorem to find the probability of a class given a measure-
ment, P(c | d), ¢ C, d D, which will be used to assign a class
to each measurement. The formula is as follows where P(c)
is the probability for each class, and P(d) is the probability
for each measurement:

P(cld) = HLEAH))

A subroutine that applies Bayes theorem is used for this
task and takes in the class conditional probabilities, the P(c)
array, and the P(d) value to calculate P(c|d). 2.7 Perturba-
tion A perturbation is defined as a set number added to a
probability in order to mimic real-world data by allowing
for some randomness in the data and is further described in
this section. At this point we have generated a random true
class for every measurement based on the percentage of each
class which is given by the user, and generated P(c). The next
step is to compute the class conditional probabilities (P(d |

Conference acronym *XX, June 03-05, 2022, Woodstock, NY

true class array : c1, ¢,
P(dl,z) = 04, 0.6
Table 7. P(diz¢12) before perturbation :

di | dy
ci|04]0
|0 [06

Table 8. P(dizc12) after perturbation :

di | dy
¢ 1037015
cp | 0.1 045

c)) and apply a perturbation (if any). The program originally
starts assuming that there is no perturbation and assigns the
value from P(d) to P(d|ctrye,lass, f;) and assigns a 0 to every
class that is not the true class of P(d). Then a perturbation
is computed by taking out a percentage of the true class
for P(d), dividing by the number of classes, and adding this
quotient to all of the classes with P(d). A visualization of this
is provided in Tables 7 and 8.

As shown, the true classes of d; and d, are ¢; and ¢, re-
spectively and the probabilities of d; and d; are 10 and 20
respectively. Before the perturbation the values for class ¢;
and measurement d; and the values for class ¢; and measure-
ment dp were 10 and 20 respectively since c; is the true class
of d; and 1 is the true class of d,. We then take 50% of the
value for the true classes (in this case 10, and 20 so 5 and 10),
divide by the number of classes (2) and add this back to each
value in the column, giving us 7.5, 2.5, 5, and 15.

After the class conditional probability array is filled, we
normalize it such that the total sum of all the values in each
row after perturbation is 1. This is since the total probability
for each of the classes must be 1.

4.3.7 Subspace Class Conditional Probability Genera-
tion. The mathematics and explanation behind the subspace
class conditional probability generation was already outlined
in section 4.2.2. A three-dimensional array is generated and
filled with 0s. The 0s are important as in rare cases the total
sum of the 8 probabilities for the subspaces may be 0 and the
program needs to reflect this. The next step in this subroutine
first requires us to convert a tuple into a linear address. A lin-
ear address is a way to refer back to a given leaf in a tree or a
tuple. In this case, we have the linear addresses (the index of
the tuple) and we need to find the tuples in order to add their
probabilities to the correct subspace. The lin_add_to_tuple
function defined in Edsn Kensington’s Documentation for
Linear Address and its Inverse is used and the probability
from the class conditional probability array is added to the
corresponding subspace class conditional probability array
[11]. Once all probabilities are added, the subroutine ends
and the originally empty subspace probability array is up-
dated with these new values.

Robila, and Haralick

tuple = (0,0,1,0,1,0)
Table 9. Class Conditional Probability Array for Tuple

Class: | Probability:
¢ 0.01

Co 0.2

cs 0.003

Cq 0.1

Assigned Class : ¢,

4.3.8 Class Assignments. Assignment Using Class Con-
ditional Probabilities

The first task in this program is a basic assignment that
relies on the class conditional probabilities. This assignment
takes the class conditional probabilities for each tuple and
assigns the class with the highest class conditional proba-
bility to the tuple. An example is provided in table 9 with 4
classes and a tuple of length 6.

As shown, since class c; has the highest probability, it is as-
signed to the tuple. The program does this by looking at each
tuple separately, setting a threshold value of 0, and updating
the threshold for each subsequent class. If the next class has
a higher probability than the previous, it is assigned to the
tuple, and the threshold is updated to the probability for this
class. This is then repeated until all the class probabilities
are checked and the highest class is assigned

Assignment Using Subspace Class Conditional Proba-
bilities

The same method defined in section 4.3.6 is applied for
the Subspace Class Conditional Probabilities. However, there
is one difference in that we have two subspaces for each
tuple and each of these subspaces has their own probability.
This means that they have to be combined in some way, and
for the case of this experiment, they are multiplied. Further
information on this is provided in section 6.

When a tuple is entered into this subroutine, the tuple
is split into two parts and each of these subspaces are con-
verted into linear addresses using the inverse linear address
function defined in Edsn Kensington’s Documentation for
Linear Address and its Inverse [11]. Then the addresses are
looked up in the subspace probability array and the two
probabilities are multiplied. This is repeated for all classes
and the class with the highest probability is assigned.

Assignment Using Class Conditional Probabilities and
Bayes Rule

This section describes the assignment of the binary tuples
based on their class conditional probabilities and Bayes Rule.
The first step needed for this assignment is applying the
Bayes rule to fill the array P(c | d). We already know P(d), P(c),
and P(d | ¢) so we just apply it and build the array. Then, using
the same method as the previous sections and the values
produced for each measurement and class, we assign the
class that has the highest probability to each measurement.

Subspace-Classification Approach for Simulated Tuple Class Assignment

If we have more than one class where this is true, the program
defaults to the first class with this equal probability. Then
P(c | d) is normalized to add up to 1.

Assignment Using Subspace Class Conditional Proba-
bility Arrays and Bayes Rule

This assignment is a combination of the previous two sec-
tions. The same method is used to combine the two subspace
probabilities, but these values are added instead of multiplied.
Then, Bayes Rule is applied again.

The next step is very important for determining the prob-
ability of correct classification and involves building a confu-
sion matrix. In a for loop, the confusion matrix is generated
by summing up all the probabilities for which the assigned
class was c1 and the true class was c1, the values for which
the assigned class was c2 and the true class was c1, etc. until
the second table is generated. Since the diagonal is the only
one where the true class is the same as the assigned class,
the probability of correct identification will be the sum of
the values in the diagonal of the confusion matrix. Note that
the total sum of the confusion matrix will always be 1.

Following the generation of this confusion matrix and
determining the probability of correct identification and con-
verting it to a percentage, the program is complete. The
average accuracy and standard deviations are outputted in
addition to the number of classes, measurements and runs.

For this project, 4 confusion matrices are generated with
one for each assignment.

4.3.9 Additional Features. While mathematically the pro-
gram is complete with just these basic steps, there are some
programming additions that make the program easier to
work with. The main one is a debugging feature which can
be changed in the main program file. This is a global variable
which is present in every subroutine and can turn on the
ability to see every array and data value generated. However,
there are several other subroutines that are needed to make
this work. These are for printing a float or an int array, and
for printing a float or an int vector. They are all quite similar
and involve a for loop running through all of the values in
the array and outputting them. There are also comments and
descriptions of what each subroutine does at the beginning
of every file to improve readability.

4.4 Subspace Classifier with Large Datasets

We also thought it would be interesting to develop a subspace
classifier that is functionally the same as the one described
in section 4.3 but fixes situations where the amount of data
being processed by the algorithm is too much for the com-
puters it is running on to handle by using subspaces. This
means that if the same data file is provided to both programs,
they should both output the same results.

Our Method

In order to allow the program to perform with a large
amount of data we minimized the number of large arrays

Conference acronym *XX, June 03-05, 2022, Woodstock, NY

that the computer had to have stored in the memory through
malloc. The largest arrays and thus the most problematic
ones were the class conditional probability array, the array of
all tuples, and the marginal probability arrays. In our previ-
ous classifier the subspace probability arrays were generated
using the values inside the class conditional array and we
lost a lot of performance. Instead, we generate the marginal
probability and tuple for each measurement individually and
send the probabilities directly into the subspace probability
arrays. As soon as the measurement is generated and used, it
is cleared from memory. Note that the marginal probability
array was normalized in the previous classifier. Since we
never generate this array and generate each probability one
by one, the subspaces have inflated values. This was fixed
by normalizing the subspace arrays.

Through this generation approach we were able to create
another version of the subspace classifier that could perform
well on very large datasets that overflow the memory of a
given computing device.

4.5 Performance Optimization by Using Slabs

The subspace classifiers previously defined in sections 4.3
and 4.4 had several dimensions in their measurement space.
Each of the tuples in this measurement space had a non-zero
probability and therefore, a lot of randomness was induced.
In order to fix this and simulate the more structured appear-
ance of real-world data, a restriction in the form of a slab
taken from the measurement space is used. A visualization
of this is taking a section of a hyper-dimensional data cube.
This can be defined through the following expression in an
N-dimensional space:

{x € RN|ax + b; > 0 and ax + b, < 0} (10)

Where b1 and b2 are chosen such that some tuple exists
in this step and |b2-b1|>1 to not make the slab too small. The
program interprets this equation by taking 2 values, a center
value and another value that is added and subtracted from
this center value to create bl and b2:

center =7
value =2
{x e RN|ax +9 > 0 and ax +5 < 0} (11)

The values for a are randomly generated and are between
1and 1.5.

4.6 Python Machine Learning Model

We took the tuples and marginal probabilities and inputted
them into a Support Vector Machine with the goal of classi-
fying the measurements into true classes. In order to do this
we took a dataset from the subspace classifier of 729 6-tuples
and probability pairs and their associated true classes. We
then split it into a 80%-20% training-testing ratio and ran the
classification.

Conference acronym *XX, June 03-05, 2022, Woodstock, NY

5 Results
5.1 Normal Subspace Classifier

5.1.1 Experimental Protocols. We tested the subspace
classifier using 4 experimental protocols who’s input data
files are defined in Appendix A.

Increasing Number of Subspaces

The first interesting experiment that can be done with
the classifier is looking at what happens as the number of
subspaces increases while all other variables stay the same.
This would also be the same as decreasing the size of each
subspace. The control probabilities of correct identification
can be found by running the input in Appendix A.2.1.

There is currently one subspace and a measurement space
of size 729 with dimension 3. To see if increasing the number
of subspaces has any effect on the accuracy, the same run file
can be run using 2,3, and 6 instead of the 1 for the number
of subspaces. This would run the program with 2, 3 and 6
subspaces. The same thing can be done more rigorously with
a higher-dimensioned measurement space. The control run
file for a measurement space of dimension 36 is in Appendix
A22

In this run file, the maximum integer value in tuples has
been changed to 2 to allow the program to run in a rea-
sonable amount of time. This run file can then be run with
2,3,4,6,9,12,18, and 36 subspaces to view the relationship
between number of subspaces and probability of correct
identification.

It was expected that increasing the number of subspaces
will be beneficial and give a higher probability of correct
identification since the measurements will be split up more
and there will be more overlap. In addition, it was also ex-
pected that this trend will be very slightly exponential as the
number of subspaces gets closer to the number of dimensions
in the measurement space.

Increasing perturbation

In addition to looking at how the number of subspaces
affects the probabilities of correct identification; it may also
be interesting to look at what happens when perturbation
is increased. This can be done automatically by turning on
the perturbation feature, which will run the experiment for
each perturbation value between 0 and 1 with an increment
of 0.05. The run file for this experiment can be found in
Appendix A 3.

This experiment has been tried already on a Bayes classi-
fier and the trend showed a linear decrease as the perturba-
tion decreased. It was expected that there would be a linear
decrease in percent correct identification as the perturbation
decreases will hold true for the subspace classifier. Further
experiments combining the change in the number of sub-
spaces and perturbation can also be done. By using the same
run file as above and changing the number of subspaces to
2, 3 and 6, several graphs can be produced and overlayed.
It was expected that the same trend will continue and the

Robila, and Haralick

trend between perturbation and accuracy will be roughly
linear but will get steeper as there are more subspaces.

Increasing the Number of Classes

Increasing the Number of Classes is another possible ex-
periment. The run file for the control value is in Appendix
A4

The same program can then be run with 2, 3, and 4 classes
to see if there is any difference in the probability of correct
identification. It was expected that as the number of classes
increases, the probability of correct identification will de-
crease since there will be less values to choose from.

Change in Accuracy While Increasing Slab Size

It is also interesting to observe the effect of increasing
the size of the slab in the hyperdimensional measurement
space cube. This is equivalent to decreasing the number of
0s in the class conditional probability array. The maximum
number of non-zero values in the measurement space for this
experiment is 729, and the minimum is 0 if no measurements
are inside the slab. It is expected that the probability of cor-
rect classification will increase for the subspace classifiers
when the size of the slab is increased. The experiment can
be tested by running the parameters in the program’s run
file (Appendix A.5). The value that is added and subtracted
from the middle (in this case 0.25), can be increase to 0.5, 1
and 2 to develop a comparison.

5.1.2 Results for Experimental Protocols. Increasing
Number of Subspaces

The subspace classifiers did show a change as the number
of subspaces increased as shown from Figure 1. This experi-
ment did not test perturbation, so the non-subspace classi-
fiers remained at 100% probability of correct identification
throughout the experiment. There is a general downward
trend in accuracy as the number of subspaces increases, and
it also seems that the variance also decreases as the number
of subspaces approaches 6. The Bayes subspace classifier
was always better than the non-Bayes subspace classifier.
Across all the subspaces, the average accuracy and median
for the bayes subspace classifier were 47.09 and 30.88 respec-
tively. The average accuracy and median for the non-bayes
subspace classifier were 47.06 and 30.84 respectively. These
findings disprove the hypothesis that accuracy would im-
prove as the number of subspaces increased.

Increasing Perturbation with Increasing Number of
Subspaces for Bayes Subspace Classifier

It was found that the probability of correct identification
increased at a greater rate for experiments with lower num-
bers of subspaces as shown from Figure 2. With one subspace,
the trend seems to be closer to the like x=y, but the slope of
the line decreases as subspaces were added. There is also an
increase in variance as the perturbation decreases towards
0. All the probabilities of correct identification begin at the

Subspace-Classification Approach for Simulated Tuple Class Assignment

same 25.0 value, which is just a random guess amongst the 4
classes and slowly increases from there.

Increasing the Number of Classes

Increasing the number of classes did have an effect on the
accuracies of the subspace classifiers regardless of whether
they used the Bayes rule or not as shown from Figure 3.
Since perturbation was not tested for this experiment, the
non-subspace classifiers scored 100% and stayed the same
even when the number of classes was changed. It seemed
that as the number of classes increased, the probability of
correct classification decreased. This decrease seems to slow
down as more classes are added. This finding validates the
hypothesis that accuracy would decrease as the number of
classes increases.

Change in Accuracy While Increasing Slab Size
As the size of the slab in the measurement space increased,
the accuracy of the two subspace classifiers decreased as

SuUBl suB2 5uUB3 SUBG

Figure 1. Accuracy vs Number of Subspaces
Blue=Non-Bayes Class Conditional Probability Classifier
Red=Non-Bayes Subspace Classifier
Gray=Bayes Class Conditional Probability Classifier
Yellow=Bayes Subspace Classifier

Figure 2. Increasing Perturbation with Increasing Number
of Subspaces for Bayes Subspace Classifier
Blue= Bayes Subspace Classifier 1 Subspace
Red= Bayes Subspace Classifier 2 Subspace
Gray = Bayes Subspace Classifier 3 Subspace
Yellow= Bayes Subspace Classifier 6 Subspace

Conference acronym *XX, June 03-05, 2022, Woodstock, NY

shown from Figure 4. The subspace classifier that used Bayes
rule outperformed the subspace classifier that did not for all
trials, but the largest difference was when the range had a
size of 0.5. The two class conditional probability classifiers
were unaffected. This experiment is equivalent to decreasing
the number of 0s in the class conditional probabilities.

5.2 Subspace Classifier with large Datasets

The subspace classifier that was adapted to allow for large
datasets was successful in having the same results as the
normal subspace classifier and did work as expected.

5.3 Comparison Between Python Machine Learning
Model and Subspace Classifier

As mentioned previously, to show the importance of this
development, we compared our subspace classifier to a sim-
ilar Python-based machine learning model. Our subspace

Figure 3. Accuracy vs Number of Classes
Blue=Non-Bayes Class Conditional Probability Classifier
Red=Non-Bayes Subspace Classifier
Gray=Bayes Class Conditional Probability Classifier
Yellow=Bayes Subspace Classifier

it =
& o
30 =
20
10
U
RESTRO.250 RESTRO.500 RESTR1.000 RESTR2.000

Figure 4. Change in Accuracy While Increasing Slab Size
Blue=Non-Bayes Class Conditional Probability Classifier
Red=Non-Bayes Subspace Classifier
Gray=Bayes Class Conditional Probability Classifier
Yellow=Bayes Subspace Classifier

Conference acronym *XX, June 03-05, 2022, Woodstock, NY

classifier had a 25.172 accuracy on the testing data without
any data optimisation using a slab and the python model had
a 20.183 accuracy, demonstrating that our model has better
accuracy than standard accepted models.

6 Conclusions and Future Work

We have defined the development of a subspace classifier
for measurement classification and its expansion to large
datasets that cannot be run on the memory of normal com-
puters. We have also outlined a comparison between our
subspace classifier and a Python machine learning model
from a package and have shown that it equals or outper-
forms the Python model. We have also described several
definitions and notations needed to understand this paper.
In the future we plan to continue working on optimizing
the performance of the classifier even on this extreme scale
of data randomization and do more comparisons between
the subspace classifiers and other machine learning models.
For example, testing whether neural networks can see some
hidden trend in the data might be interesting.

References

[1] Jgee [n.d.].

[2] 2022. What is python? executive summary. https://www.python.org/
doc/essays/blurb/

[3] Igor Aleksander, WV Thomas, and PA Bowden. 1984. WISARD- a
radical step forward in image recognition. Sensor review (1984).

[4] Woodrow Wilson Bledsoe and Iben Browning. 1959. Pattern recogni-
tion and reading by machine. In Papers presented at the December 1-3,
1959, eastern joint IRE-AIEE-ACM computer conference. 225-232.

[5] Ilias Chalkidis and Dimitrios Kampas. 2019. Deep learning in law:
early adaptation and legal word embeddings trained on large corpora.
Artificial Intelligence and Law 27, 2 (2019), 171-198.

[6] Irene Y Chen, Emma Pierson, Sherri Rose, Shalmali Joshi, Kadija Fer-
ryman, and Marzyeh Ghassemi. 2021. Ethical machine learning in
healthcare. Annual review of biomedical data science 4 (2021), 123-144.

[7] Serkan Gunal and Rifat Edizkan. 2007. Use of novel feature extraction
technique with subspace classifiers for speech recognition. In IEEE
International Conference on Pervasive Services. IEEE, 80-83.

[8] Robert M Haralick and Ahmet Cem Yuksel. 2020. The N-Tuple Sub-
space Classifier: Extensions and Survey. IEEE Transactions on Systems,
Man, and Cybernetics: Systems 51, 1 (2020), 22-39.

[9] Thomas Martini Jorgensen and Christian Linneberg. 1999. Theoretical
analysis and improved decision criteria for the n-tuple classifier. IEEE
Transactions on Pattern Analysis and Machine Intelligence 21, 4 (1999),
336-347.

[10] D-M Jung, Mukkai S Krishnamoorthy, George Nagy, and Andrew
Shapira. 1996. N-tuple features for OCR revisited. IEEE Transactions
on Pattern Analysis and Machine Intelligence 18, 7 (1996), 734-745.

[11] Edsn Kensington and Robert Haralick. 2022. Documentation for Linear

Address and its Inverse.

Octavio Loyola-Gonzalez. 2019. Black-box vs. white-box: Understand-

ing their advantages and weaknesses from a practical point of view.

IEEE Access 7 (2019), 154096—154113.

[13] Scott M Lundberg, Bala Nair, Monica S Vavilala, Mayumi Horibe,
Michael J Eisses, Trevor Adams, David E Liston, Daniel King-Wai
Low, Shu-Fang Newman, Jerry Kim, et al. 2018. Explainable machine-
learning predictions for the prevention of hypoxaemia during surgery.
Nature biomedical engineering 2, 10 (2018), 749-760.

[12

—

Robila, and Haralick

[14] Microsoft. 2021. Visual studio code - code editing. redefined. https:
//code.visualstudio.com/

[15] Richard James Mitchell, JM Bishop, and Paul R Minchinton. 1996.
Optimising memory usage in n-tuple neural networks. Mathematics
and computers in simulation 40, 5-6 (1996), 549-563.

[16] Michal Morciniec and Richard Rohwer. 1995. The n-tuple classifier:
Too good to ignore. (1995).

[17] Thuy TT Nguyen and Grenville Armitage. 2008. A survey of tech-
niques for internet traffic classification using machine learning. IEEE
communications surveys & tutorials 10, 4 (2008), 56-76.

[18] Saeed Nosratabadi, Amirhosein Mosavi, Puhong Duan, Pedram
Ghamisi, Ferdinand Filip, Shahab S Band, Uwe Reuter, Joao Gama,
and Amir H Gandomi. 2020. Data science in economics: comprehen-
sive review of advanced machine learning and deep learning methods.
Mathematics 8, 10 (2020), 1799.

[19] Ioannis Pastaltzidis, Nikolaos Dimitriou, Katherine Quezada-Tavarez,
Stergios Aidinlis, Thomas Marquenie, Agata Gurzawska, and Dim-
itrios Tzovaras. 2022. Data augmentation for fairness-aware machine
learning: Preventing algorithmic bias in law enforcement systems. In
2022 ACM Conference on Fairness, Accountability, and Transparency.
2302-2314.

[20] Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-
tenhofer, Ron Weiss, Vincent Dubourg, et al. 2011. Scikit-learn: Ma-
chine learning in Python. the Journal of machine Learning research 12
(2011), 2825-2830.

[21] RJ Rohwer. 1995. Two Bayesian Treatments of the n-tuple recognition
method. (1995).

[22] Richard Rohwer and David Cressy. 1989. Phoneme classification by
boolean networks.. In EUROSPEECH. 2557-2560.

[23] Ribana Roscher, Bastian Bohn, Marco F Duarte, and Jochen Garcke.
2020. Explainable machine learning for scientific insights and discov-
eries. leee Access 8 (2020), 42200-42216.

[24] FM Serra Braganca, S Broomé, Marie Rhodin, S Bjérnsdéttir, V Gun-
narsson, JP Voskamp, E Persson-Sjodin, W Back, Gabriella Lindgren,
M Novoa-Bravo, et al. 2020. Improving gait classification in horses by
using inertial measurement unit (IMU) generated data and machine
learning. Scientific reports 10, 1 (2020), 1-9.

[25] Markus Stocker, Paula Silvonen, Mauno Roénkks, and Mikko
Kolehmainen. 2016. Detection and classification of vehicles by mea-
surement of road-pavement vibration and by means of supervised
machine learning. Journal of Intelligent Transportation Systems 20, 2
(2016), 125-137.

[26] Roland Tarling and Richard Rohwer. 1993. Efficient use of training
data in the n-tuple recognition method. Electronics Letters 24, 29 (1993),
2093-2094.

[27] Barbara Thompson. 2022. What is C programming language? basics,
introduction, history. https://www.guru99.com/c-programming-
language.html

[28] Fei Wang, Lawrence Peter Casalino, and Dhruv Khullar. 2019. Deep
learning in medicine—promise, progress, and challenges. JAMA inter-
nal medicine 179, 3 (2019), 293-294.

[29] Ian Weiner. 2021. FTC declares racially biased algorithms
in artificial intelligence unfair and deceptive, prohibited by
law. https://www.lawyerscommittee.org/ftc-declares-racially-
biased-algorithms-in-artificial-intelligence-unfair-and-deceptive-
prohibited-by-law/

[30] Douglas Yeung, Inez Khan, Nidhi Kalra, and Osonde Osoba. 2021. Iden-
tifying Systemic Bias in the Acquisition of Machine Learning Decision
Aids for Law Enforcement Applications. JSTOR.

https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://www.guru99.com/c-programming-language.html
https://www.guru99.com/c-programming-language.html
https://www.lawyerscommittee.org/ftc-declares-racially-biased-algorithms-in-artificial-intelligence-unfair-and-deceptive-prohibited-by-law/
https://www.lawyerscommittee.org/ftc-declares-racially-biased-algorithms-in-artificial-intelligence-unfair-and-deceptive-prohibited-by-law/
https://www.lawyerscommittee.org/ftc-declares-racially-biased-algorithms-in-artificial-intelligence-unfair-and-deceptive-prohibited-by-law/

Subspace-Classification Approach for Simulated Tuple Class Assignment

A Experimental Protocols
A.1 Data Input File Format

Number of Trials: xxx
Size of Measurement Space: xxx
Number of Dimensions in Measurement Space: xxx
Number of Subspace: xxx
Number of Classes: xxx
Value to be Added to Center: xxx
Center: xxx
Maximum Integer Value in Tuple: xxx
Seed: xxx
Probability of Class 1: xxx
Probability of Class 2: xxx

A.2 Protocol 1
A.2.1 Protocol 1a.

10,000
729

NN A2

3
200221412424
25.0
25.0
25.0
25.0

A.2.2 Protocol 1b.

10,000
68719476736
36
1
12
2
7
2
200221412424
25.0
25.0
25.0
25.0

A.3 Protocol 2

10,000
729

N AN

Conference acronym *XX, June 03-05, 2022, Woodstock, NY

7
3
200221412424
25.0
25.0
25.0
25.0

A.4 Protocol 3

10,000
729

NN = =N

3
200221412424
25.0
25.0
25.0
25.0

A.5 Protocol 4

200221412424
25.0
25.0
25.0
25.0

	Abstract
	1 Introduction
	2 Previous Work
	3 Definitions and Notation
	4 Methods
	4.1 Software Components
	4.2 Background for Normal Subspace Classifier
	4.3 Programming for Normal Subspace Classifier
	4.4 Subspace Classifier with Large Datasets
	4.5 Performance Optimization by Using Slabs
	4.6 Python Machine Learning Model

	5 Results
	5.1 Normal Subspace Classifier
	5.2 Subspace Classifier with large Datasets
	5.3 Comparison Between Python Machine Learning Model and Subspace Classifier

	6 Conclusions and Future Work
	References
	A Experimental Protocols
	A.1 Data Input File Format
	A.2 Protocol 1
	A.3 Protocol 2
	A.4 Protocol 3
	A.5 Protocol 4

